Атмосфера: состав и строение

Земля окружена слоем газов, что называются атмосферой. Атмосфера очень важна для жизни на Земле и делает многое, чтобы защитить и помочь человечеству жить.

Структура Земли

Может показаться, что Земля – это один большой кусок твердой скалы, но она состоит из нескольких частей. Некоторые из них постоянно движутся!

Проблема водного дефицита - Рефераты по географии

Рефераты по географии > Проблема водного дефицита
Страница: 2/3

Процесс фотосинтеза более чувствителен к действию высо­ких температур, чем дыхание. Гидролиз полимеров, в частности белков, ускоряющийся при водном де­фиците, значительно активируется при высокотемпературном стрессе. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клетки у неустой­чивых к перегреву растений. У жаростойких растений наблю­дается увеличение содержания органических кислот, связываю­щих избыточный аммиак. Еще одним способом защиты от перегрева может служить усиленная транспирация, обеспечи­ваемая мощной корневой системой. В других случаях (суккуленты) жаростойкость определяется высокой вязкостью цито­плазмы и повышенным содержанием прочно связанной воды. При действии высоких температур в клетках растений индуци­руется синтез стрессовых белков (белков теплового шока).

В сельскохозяйственной практике для повышения жароу­стойчивости растений применяют внекорневую обработку 0,05%-ным раствором солей цинка.

ПРИСПОСОБЛЕНИЕ РАСТЕНИЙ К ЗАСУХЕ

Как уже отмечалось, не­благоприятное действие засухи состоит в том, что растения ис­пытывают недостаток воды или комплексное влияние обезво­живания и перегрева. У растений засушливых месторбитаний — ксерофитов — выработались приспособления, позволяю­щие переносить периоды засухи.

Растения используют три основных способа защиты:

1) предотвращение излишней потери воды клетками (избегание высыхания), 2) перенесение высыхания, 3) избегание периода засухи. Наиболее общими являются приспособления для сохранения воды в клетках.

Группа ксерофитов очень разнородна. По способности пере­носить условия засухи различают следующие их типы (по П. А. Генкелю):

1. Суккуленты (по Н. А. Максимову — ложные ксеро­фиты) — растения, запасающие влагу (кактусы, алоэ, очиток, молодило, молочай). Вода концентрируется в листьях или сте­блях, покрытых толстой кутикулой, волосками. Транспирация, фотосинтез и рост осуществляются медленно. Они плохо пере­носят обезвоживание. Корневая система распространяется ши­роко, но на небольшую глубину.

2. Несуккулентные виды по уровню транспирации делятся на несколько групп.

а) Настоящие ксерофиты (эвксерофиты — полынь, вероника беловойлочная и др.). Растения с небольшими листьями, часто опушенными, жароустойчивы, транспирация невысокая, спо­собны выносить сильное обезвоживание, в клетках высокое ос­мотическое давление. )Корневая система сильно разветвлена, но на небольшой глубине.

б) Полуксерофиты (гемиксерофиты — шалфей, резак и др.). Обладают интенсивной транспирацией, которая поддержи­вается деятельностью глубокой корневой системы, часто достигающей грунтовых вод. Плохо переносят обезвожи­вание и атмосферную засуху. Вязкость цитоплазмы у них невелика.

в) Стипаксерофиты — степные злаки (ковыль и др.). При­способлены к перенесению перегрева, быстро используют влагу летних дождей, но переносят лишь кратковременный недоста­ток воды в почве.

г) Пойкилоксерофиты (лишайники и др.) не способны регу­лировать свой водный режим и при значительном обезвожива­нии впадают в состояние покоя (анабиоз). Способны перено­сить высыхание.

3. Эфемеры—растения с коротким вегетационным пе­риодом, совпадающим с периодом дождей (способ избегания засухи в засушливых местообитаниях).

Изучая физиологическую природу засухоустойчивости ксе­рофитов, Н. А. Максимов (1953) показал, что эти растения не являются сухолюбивыми: обилие воды в почве способствует их интенсивному росту. Устойчивость к засухе заключается в их способности переносить потерю воды.

Растения-мезофиты также могут приспосабливаться к засу­хе. Изучение приспособлений листьев к затрудненным усло­виям водоснабжения (В. Р. Заленский, 1904) показало, что ана­томическая структура листьев различных ярусов на одном и том же растении зависит от уровня водоснабжения, освещен­ности и т. д. Чем выше по стеблю расположен лист, тем мель­че его клетки, больше устьиц на единицу поверхности, а размер их меньше, гуще сеть проводящих пучков, сильнее развита па-лисадная паренхима и т. д. Такого рода закономерности изме­нений листового аппарата получили название, закона Заленско­го. Было выяснено, что более высоко расположенные листья часто попадают в условия худшего водоснабжения (особенно у высоких растений), но обладают более интенсивной транспирацией. Устьица у листьев верхних ярусов даже при водном де­фиците дольше остаются открытыми. Это, с одной стороны, поддерживает процесс фотосинтеза, а с другой — способствует увеличению концентрации клеточного сока, что позволяет им оттягивать воду от ниже расположенных листьев. Поскольку сходные особенности строения свойственны ряду ксерофитов, такая структура листьев получила название ксероморфной. Сле­довательно, возникновение ксероморфной структуры листьев — одно из анатомических приспособлений к недостатку воды, так же как заглубление устьиц в ткани листа, опушенность, толстая кутикула, редукция листьев и др.

Биохимические механизмы защиты предот­вращают обезвоживание клетки, обеспечивают детоксикацию продуктов распада, способствуют восстановлению нарушенных структур цитоплазмы. Высокую водоудерживающую способ­ность цитоплазмы в условиях засухи поддерживает накопление низкомолекулярных гидрофильных белков, связывающих в ви­де гидратных оболочек значительные количества воды. Этому помогает также взаимодействие белков с пролином, концентра­ция которого значительно возрастает в условиях водного стресса , а также увеличение в цитоплазме содержания моносахаров.

Интересным приспособлением, уменьшающим потерю воды через устьица, обладают суккуленты. Благодаря особенностям процесса фотосинтеза (САМ-метаболизм) в дневные часы в условиях высокой температуры и сухости воздуха пустыни их устьица закрыты, поскольку СОз фиксируется ночью.

Детоксикация избытка образующегося при протеолизе ам­миака осуществляется с участием органических кислот, коли­чество которых возрастает в тканях при водном дефиците и высокой температуре. Процессы восстановления после пре­кращения действия засухи идут успешно, если сохранены от по­вреждения при недостатке воды и перегреве генетические си­стемы клеток. Защита ДНК от действия засухи состоит в частичном выведении молекулы из активного состояния с по­мощью ядерных белков и, возможно, как в случае теплового стресса, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при силь­ной длительной засухе.

Засуха вызывает существенные перестройки в гормональной системе растений: уменьшается содержание гормонов-актива­торов роста — ауксина, цитокинина, гиббереллинов, стимулято­ров роста фенольной природы и возрастает уровень абсцизовой кислоты и этилена. Приспособительный характер такого перераспределения очевиден, так как для поддержания роста необходима вода. Поэтому в условиях засухи от быстроты остановки ростовых процессов часто зависит выживание расте­ния. При этом на ранних этапах засухи, по-видимому, главную роль играет стремительное возрастание содержания ингибито­ров роста, поскольку даже в условиях сбалансированного во­доснабжения клеток срочные реакции закрывания устьиц у рас­тений осуществляются за счет ускоренного (в течение несколь­ких минут при водном дефиците 0,2 МПа) увеличения содержания АБК. Пороговые величины водного по­тенциала, вызывающие увеличение АБК у растений-мезофитов, могут зависеть от степени засухоустойчивости растений: для кукурузы это 0,8 МПа, для сорго — 1 МПа. Содержание гормо­на в тканях в среднем увеличивается на порядок со скоростью 0,15 мкг/г сырой массы в час. Закрывание устьиц уменьшает потерю воды через транспирацию. Кроме того, АБК способ­ствует запасанию гидратной воды в клетке, поскольку активи­рует синтез пролина, увеличивающего оводненность белков клетки в условиях засухи. АБК тормозит также синтез РНК и белков, накапливаясь в корнях, задерживает синтез цитоки­нина. Таким образом, увеличение содержания АБК при водном дефиците уменьшает потерю воды через устьица, способствует запасанию гидратной воды белками и переводит обмен ве­ществ клеток в режим «покоя».,

В условиях водного стресса отмечается значительное выде­ление этилена. Так, в листьях пшеницы при уменьшении содер­жания воды на 9% образование этилена возрастает в 30 раз в течение 4 ч. Выяснено, что водный стресс увеличивает актив­ность синтетазы 1-аминоциклопропанкарбоновой кислоты, ката­лизирующей ключевую реакцию биосинтеза этилена. При улуч­шении водного режима выделение этилена возвращается к норме. У многих растений при действии засухи (воздушной и почвенной) обнаружено также накопление ингибиторов роста фенольной природы (хлорогеновой кислоты, флавоноидов, фенолкарбоновых кислот).

Отмеченные выше изменения содержания фитогормонов-ингибиторов наблюдаются у растений-мезофитов при засухе. У пойкилоксерофитов, переходящих при наступлении засухи в состояние анабиоза, прекращение роста не связано с накопле­нием ингибиторов роста.

Снижение содержания гормонов-активаторов роста, в частности ИУК, происходит, по-видимому, вслед за останов­кой роста. Например, в листьях подсолнечника, в верхушках стеблей и колосках пшеницы и других растений рост начинает подавляться уже при влажности почвы, составляющей 60% от полевой влагоемкости, а количество ауксинов заметно сни­жается в условиях почвенной засухи при влажности почвы около 30% от полевой влагоемкости. Уменьшение ауксина в тканях при засухе может быть связано с низким содержанием его предшественника — триптофана, а также с подавлением транспорта ауксинов по растению. Обработка растений в усло­виях засухи растворами ауксина, цитокинина, гиббереллина усугубляет отрицательное действие засухи. Однако опрыскива­ние растений цитокинином в период восстановления после за­сухи значительно улучшает состояние растений. Кроме того, цитокинин увеличивает жаростойкость растений (в частности улучшает всхожесть семян). Как предполагает О. Н. Кулаева (1973), это защитное действие цитокининов может быть связа­но с их влиянием на структурное и функциональное состояние макромолекулярных компонентов клетки, в частности на мем­бранные системы.